Hidden Semi-Markov Models for Single-Molecule Conformational Dynamics

نویسندگان

  • A. Kovalev
  • N. Zarrabi
  • F. Werz
  • M. Boersch
  • Z. Ristic
  • H. Lill
  • D. Bald
  • C. Tietz
  • J. Wrachtrup
چکیده

The conformational kinetics of enzymes can be reliably revealed when they are governed by Markovian dynamics. Hidden Markov Models (HMMs) are appropriate especially in the case of conformational states that are hardly distinguishable. However, the evolution of the conformational states of proteins mostly shows non-Markovian behavior, recognizable by non-monoexponential state dwell time histograms. The application of a Hidden Markov Model technique to a cyclic system demonstrating semi-Markovian dynamics is presented in this paper and the required extension of the model design is discussed. As standard ranking criteria of models cannot deal with these systems properly, a new approach is proposed considering the shape of the dwell time histograms. We observed the rotational kinetics of a single F1-ATPase α3β3γ sub-complex over six orders of magnitude of different ATP to ADP and Pi concentration ratios, and established a general model describing the kinetics for the entire range of concentrations. The HMM extension described here is applicable in general to the accurate analysis of protein dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data

This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin’s conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidd...

متن کامل

Decoding Single Molecule Time Traces with Dynamic Disorder

Single molecule time trajectories of biomolecules provide glimpses into complex folding landscapes that are difficult to visualize using conventional ensemble measurements. Recent experiments and theoretical analyses have highlighted dynamic disorder in certain classes of biomolecules, whose dynamic pattern of conformational transitions is affected by slower transition dynamics of internal stat...

متن کامل

On detailed balance and reversibility of semi-Markov processes and single-molecule enzyme kinetics

Semi-Markov processes have found increasing applications in modeling the kinetics of single enzyme molecules. Detailed balance is a widely accepted condition for Markov models of closed chemical systems and well known to be equivalent to the reversibility of a stationary Markov process. We show that for a semi-Markov process detailed balance is only a necessary condition, but not sufficient, fo...

متن کامل

Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data

We address the problem of analyzing sets of noisy time-varying signals that all report on the same process but confound straightforward analyses due to complex inter-signal heterogeneities and measurement artifacts. In particular we consider single-molecule experiments which indirectly measure the distinct steps in a biomolecular process via observations of noisy time-dependent signals such as ...

متن کامل

Analysis of complex single-molecule FRET time trajectories.

Single-molecule methods have given researchers the ability to investigate the structural dynamics of biomolecules at unprecedented resolution and sensitivity. One of the preferred methods of studying single biomolecules is single-molecule fluorescence resonance energy transfer (smFRET). The popularity of smFRET stems from its ability to report on dynamic, either intra- or intermolecular interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009